

eXtensible Neural Machine Translation

This is a repository for the extensible neural machine translation toolkit xnmt.
It is coded in Python based on DyNet [http://github.com/clab/dynet].

	Getting Started
	Prerequisites

	Running the examples

	Running unit tests

	Cython modules

	Experiment configuration file format
	exp_global

	preproc

	model

	train

	evaluate

	Translator Structure

	Preprocessing
	Tokenization

	API Doc
	Embedder

	Embedder

	Encoder

	Attender

	Decoder

	SearchStrategy

	Other Classes

	Programming Style
	Philosphy

	Coding Conventions

	Contributing

Getting Started

Prerequisites

xnmt requires Python 3.6.

Before running xnmt you must install the required packages, including Python bindings for
DyNet [http://github.com/clab/dynet].
This can be done by running pip -r requirements.txt

Next, install xnmt by running python setup.py install for normal usage or python setup.py develop for development.

Running the examples

xnmt includes a series of tutorial-style examples in the examples subfolder.
These are a good starting point to get familiarized with specifying models and
experiments. To run the first experiment, use the following:

python -m xnmt.xnmt_run_experiments examples/01_standard.yaml

Make sure to read the comments provided in examples/01_standard.yaml.

See experiments.md for more details about writing experiment configuration files
that allow you to specify the various

Running unit tests

From the main directory, run: python -m unittest discover
Or, to run a specific test, use e.g. python -m unittest test.test_run.TestRunningConfig.test_standard

Cython modules

If you wish to use all the modules in xnmt that need cython, you need to build the cython extensions by this command:

python setup.py build_ext --inplace --use-cython-extensions

Experiment configuration file format

Configuration files are in YAML dictionary format [https://docs.ansible.com/ansible/YAMLSyntax.html].

At the top-level, a config file consists of a dictionary where keys are experiment
names and values are the experiment specifications. By default, all experiments
are run in lexicographical ordering, but xnmt_run_experiments can also be told
to run only a selection of the specified experiments. An example template with
2 experiments looks like this:

exp1: !Experiment
 exp_global: ...
 preproc: ...
 model: ...
 train: ...
 evaluate: ...
exp2: !Experiment
 exp_global: ...
 preproc: ...
 model: ...
 train: ...
 evaluate: ...

!Experiment is YAML syntax specifying a Python object of the same name, and
its parameters will be passed on to the Python constructor.
There can be a special top-level entry named defaults; this experiment will
never be run, but can be used as a template where components are partially shared
using YAML anchors or the !Ref mechanism (more on this later).

The usage of exp_global, preproc, model, train, evaluate
are explained below.
Not all of them need to be specified, depending on the use case.

exp_global

This specifies settings that are global to this experiment. An example:

exp_global: !ExpGlobal
 model_file: '{EXP_DIR}/models/{EXP}.mod'
 log_file: '{EXP_DIR}/logs/{EXP}.log'
 default_layer_dim: 512
 dropout: 0.3

Not that for any strings used here or anywhere in the config file {EXP} will
be over-written by the name of the experiment, {EXP_DIR} will be overwritten
by the directory the config file lies in, and {PID} by the process id.

To obtain a full list of allowed parameters, please check the constructor of
ExpGlobal, specified under xnmt/exp_global.py. Behind the scenes, this class
also manages the DyNet parameters, it is therefore referenced by all components
that use DyNet parameters.

preproc

xnmt supports a variety of data preprocessing features. Please refer to
preprocessing.rst for details.

model

This specifies the model architecture. An typical example looks like this:

model: !DefaultTranslator
 src_reader: !PlainTextReader
 vocab: !Vocab {vocab_file: examples/data/head.ja.vocab}
 trg_reader: !PlainTextReader
 vocab: !Vocab {vocab_file: examples/data/head.en.vocab}
 encoder: !BiLSTMSeqTransducer
 layers: 1
 attender: !MlpAttender
 hidden_dim: 512
 state_dim: 512
 input_dim: 512
 trg_embedder: !SimpleWordEmbedder
 emb_dim: 512
 decoder: !MlpSoftmaxDecoder
 layers: 1
 mlp_hidden_dim: 512
 bridge: !CopyBridge {}

The top level entry is typically DefaultTranslator, which implements a standard
attentional sequence-to-sequence model. It allows flexible specification of
encoder, attender, source / target embedder, and other settings. Again, to obtain
the full list of supported options, please refer to the corresponding class
initializer methods.

Note that some of this Python objects are passed to their parent object’s
initializer method, which requires that the children are initialized first.
xnmt therefore uses a bottom-up initialization strategy, where siblings
are initialized in the order they appear in the constructor. Among others,
this causes exp_global (the first child of the top-level experiment) to be
initialized before any model component is initialized, so that model components
are free to use exp_global’s global default settings, DyNet parameters, etc.
It also guarantees that preprocessing is carried out before the model training.

train

A typical example looks like this:

train: !SimpleTrainingRegimen
 trainer: !AdamTrainer
 alpha: 0.001
 run_for_epochs: 2
 src_file: examples/data/head.ja
 trg_file: examples/data/head.en
 dev_tasks:
 - !LossEvalTask
 src_file: examples/data/head.ja
 ref_file: examples/data/head.en

The expected object here is a subclass of TrainingRegimen. Besides
SimpleTrainingRegimen, multi-task style training regimens are supported.
For multi task training, each training regimen uses their own model, so in this
case models must be specified as sub-components of the training regimen. Please
refer to examples/08_multitask.yaml for more details on this.

evaluate

If specified, the model is tested after training finished.

Translator Structure

If you want to dig in to using xnmt for your research it is necessary to understand
the overall structure. The main class that you need to be aware of is Translator, which
can calculate the conditional probability of the target sentence given the source sentence.
This is useful for calculating losses at training time, or generating sentences at test time.
Basically it consists of 5 major components:

	
	Source Embedder: This converts input symbols into continuous-space vectors. Usually this

	is done by looking up the word in a lookup table, but it could be done
any other way.

	
	Encoder: Takes the embedded input and encodes it, for example using a bi-directional

	LSTM to calculate context-sensitive embeddings.

	
	Attender: This is the “attention” module, which takes the encoded input and decoder

	state, then calculates attention.

	
	Target Embedder: This converts output symbols into continuous-space vectors like its counterpart

	in the source language.

	
	Decoder: This calculates a probability distribution over the words in the output,

	either to calculate a loss function during training, or to generate outputs
at test time.

In addition, given this Translator, we have a SearchStrategy that takes the calculated
probabilities calculated by the decoder and actually generates outputs at test time.

There are a bunch of auxiliary classes as well to handle saving/loading of the inputs,
etc. However, if you’re interested in using xnmt to develop a new method, most of your
work will probably go into one or a couple of the classes listed above.

Preprocessing

In machine translation, and neural MT in particular, properly pre-processing input
before passing it to the learner can greatly increase translation accuracy.
This document describes the preprocessing options available within xnmt, and
documents where external executables can be plugged into the experiment framework.

Tokenization

A number of tokenization methods are available out of the box; others can be plugged in either
with some help (like sentencepiece) or by passing parameters through the experiment framework
through to the external decoders.

Multiple tokenizers can be run on the same text; for example, it may be (is there a citation?) that
running the Moses tokenizer before performing Byte-pair encoding (BPE) is preferable to either one or
the other. It is worth noting, however, that if you want to exactly specify your vocabulary size
at tokenization first, an exact-size tokenizer like BPE should be specified (and thus run) last.

	
	Sentencepiece: An extenral tokenizer library that permits a large number of tokenization

	options, is written in C++, and is very fast. However, it must be installed
separately to xnmt.
Specification of the training file is set through the experiment framework,
but that (and all other) options can be passed transparently by adding them
to the experiment config.
See the Sentencepiece section for more specific information on this tokenizer.

	
	External Tokenizers: Any external tokenizer can be used as long as it tokenizes stdin and outputs

	to stdout. A single Yaml dictionary labelled tokenizer_args
is used to pass all (and any) options to the external tokenizer.
The option detokenizer_path, and its option dictionary, detokenizer_args,
can optionally be used to specify a detokenizer.

Sentencepiece

The YAML options supported by the SentencepieceTokenizer are almost exactly those presented
in the Sentencepiece readme. Some notable exceptions are below:

	Instead of extra_options, since one must be able to pass separate options to the
encoder and the decoder, use encode_extra_options and decode_extra_options, respectively.

	When specifying extra options as above, note that eos and bos are both off-limits,
and will produce odd errors in vocab.py. This is because these options add <s> and </s>
to the output, which are already addded by xnmt, and are reserved types.

	
	Unfortunately, right now, if tokenizers are chained together we see the following behavior:

	
	If the Moses tokenizer is run first, and tokenizes files that are to be used for training BPE
in Sentencepiece, Sentencepiece will learn off of the original files, not the Moses-tokenized
ones.

API Doc

Embedder

Embedder

Encoder

TODO: Pending refactoring to reduce the number of classes in Encoder, the doc should also be re-factored.

Attender

Decoder

SearchStrategy

	
class search_strategy.SearchStrategy

	Bases: object

	
class search_strategy.BeamSearch(beam_size, max_len=100, len_norm=None)

	Bases: search_strategy.SearchStrategy

	
generate_output(decoder, attender, output_embedder, dec_state, src_length=None, forced_trg_ids=None)

	
	Parameters

	
	decoder – decoder.Decoder subclass

	attender – attender.Attender subclass

	output_embedder – embedder.Embedder subclass

	dec_state – The decoder state

	src_length – length of src sequence, required for some types of length normalization

	forced_trg_ids – list of word ids, if given will force to generate this is the target sequence

	Returns

	(id list, score)

Other Classes

TODO: Add documentation.

Programming Style

Philosphy

The over-arching goal of xnmt is that it be easy to use for research. When implementing a new
method, it should require only minimal changes (e.g. ideally the changes will be limited to a
single file, over-riding an existing class). Obviously this ideal will not be realizable all the
time, but when designing new functionality, try to think of this goal. If there are tradeoffs,
the following is the order of priority (of course getting all is great!):

	Code Correctness

	Extensibility and Readability

	Accuracy and Effectiveness of the Models

	Efficiency

Coding Conventions

There are also a minimal of coding style conventions:

	Follow Python 3 conventions, Python 2 is no longer supported.

	Functions should be snake_case, classes should be UpperCamelCase.

	Indentation should be two whitespace characters.

	Docstrings should be made in reST format (e.g. :param param_name:, :returns: etc.)

A collection of unit tests exists to make sure things don’t break.

In variable names, common words should be abbreviated as:

	source -> src

	target -> trg

	sentence -> sent

	hypothesis -> hyp

	reference -> ref

For printing output in a consistent and controllable way, a few conventions
should be followed (see _official documentation: https://docs.python.org/3/howto/logging.html#when-to-use-logging for more details):
- logger.info() should be used for most outputs. Such outputs are assumed to

be usually shown but can be turned off if needed.

	print() for regular output without which the execution would be incomplete.
The main use case is to print final results, etc.

	logger.debug() for detailed information that isn’t needed in normal operation

	logger.warning(), logger.error() or logger.critical() for problematic situations

	yaml_logger(dict) for structured logging of information that should be easily
automatically parseable and might be too bulky to print to the console.

These loggers can be requested as follows:

	::

	import logging
logger = logging.getLogger(‘xnmt’)
yaml_logger = logging.getLogger(‘yaml’)

Contributing

Go ahead and send a pull request! If you’re not sure whether something will be useful and
want to ask beforehand, feel free to open an issue on the github.

Index

 B
 | G
 | S

B

 	
 	BeamSearch (class in search_strategy)

G

 	
 	generate_output() (search_strategy.BeamSearch method)

S

 	
 	SearchStrategy (class in search_strategy)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 eXtensible Neural Machine Translation

 		
 Getting Started

 		
 Prerequisites

 		
 Running the examples

 		
 Running unit tests

 		
 Cython modules

 		
 Experiment configuration file format

 		
 exp_global

 		
 preproc

 		
 model

 		
 train

 		
 evaluate

 		
 Translator Structure

 		
 Preprocessing

 		
 Tokenization

 		
 Sentencepiece

 		
 API Doc

 		
 Embedder

 		
 Embedder

 		
 Encoder

 		
 Attender

 		
 Decoder

 		
 SearchStrategy

 		
 Other Classes

 		
 Programming Style

 		
 Philosphy

 		
 Coding Conventions

 		
 Contributing

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

